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ABSTRACT: Periodic binary sequences with good autocorrelation properties are widely used in 
communications and continuous wave (CW) pulse compression radar systems. To achieve high range-
resolution in pulse compression radar systems, long binary sequences are required. This paper presents the 
construction of perfect periodic binary sequences with larger lengths and higher energy efficiency. The 
applications and suitability of such sequences for pulse compression radars are demonstrated. Both 
amplitude-symmetrical and asymmetrical sequences up to lengths N=149 are presented. This construction 
method can be extended even for higher lengths also.  

Keywords: Perfect periodic autocorrelation, pulse compression, radar, Legendre sequences, on-off keying, energy 
efficiency. 

Abbreviations: PACF, periodic autocorrelation function; CW, continuous wave; SNR, signal to noise ratio; AACF, 
aperiodic autocorrelation function; NCPC, Non-coherent Pulse Compression; OOK, on-off keying; PPAC, perfect 
periodic autocorrelation; ZCZ, zero-correlation zone. 

I. INTRODUCTION 

Signals with impulse-like autocorrelation function, which 
can disappear off-peak sidelobes in between main 
peaks are called perfect periodic sequences [1-2]. 
Perfect periodic sequences find applications in many 
areas of engineering. Some of the applications are 
synchronization, transform coding, channel coding, 
synthetic aperture imaging, communications, 
measurements and radars. In radar systems, to 
enhance the signal to noise ratio (SNR) and range 
resolution, the transmitted pulse is modulated either in 
phase or frequency and received signal is correlated 
with the replica of transmitted signal using matched 
filter. Improved SNR and high resolution are achieved at 
the cost of sidelobes at the output of matched filter, 
which are undesirable. This needs a continuous search 
for the design of optimum radar signals. Due to ease of 
implementation, binary or ternary sequences are widely 
used for modulation of transmitted signal in pulse 
compression radar systems. The important parameter 
for the design of pulse compression sequences is that 
the sequences must have good auto correlation 
property. In addition to good autocorrelation property, 
for the detection of targets at longer ranges the reflected 
echo signal must have sufficient energy. Therefore, for 
radar applications we need the signals that exhibit both 
the properties. Generally, sequences with ideal 
aperiodic autocorrelation function (AACF) do not exist 
[2]. On the other hand, construction of perfect periodic 
sequences is possible, which can be extensively used in 
continuous wave (CW) radars [3-4]. The properties and 
suitability of such signals are studied in [5-8]. Therefore, 
the focus of the work is to design the binary or biphase 
sequences which have higher energy efficiency and 
perfect periodic autocorrelation. The construction 
method is based on the modification of Legendre and 
M-sequences. Such sequences are referred as 

‘synthesized sequences’ and can be designed for all 
prime numbers with some modifications which is 
explained in section III.  

II.  PROPERTIES OF PERIODIC SEQUENCES 

Let si (n) be a real sequences of length N and its 
periodic repetition with period N is represented by ŝi(n). 
The autocorrelation and cross-correlation functions of 
such periodic sequences can be given by:  

          ����τ� = � ���	�

��
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          ����τ� = ∑ ���	�
��
�� ŝ�∗�	 + τ�                                      (2) 

           ������ =  � �, for � =  0
0, for  �≠ 0  �                                        (3) 

In the region 0 ≤ τ ≤ N, 
where ŝi (n + τ) = si((n + τ) mod N), and τ = mtb is time 
delay and tb is duration of single bit. Eqn. (1) is 
representing the autocorrelation function and Eqn. (2) 
gives the cross-correlation function of such periodic 
sequences. Eqn. (1) describes that P number of 
received pulses are correlated with Q number of 
reference pulse where P > Q. (In all correlation figs. In 
this paper  P = 5, and Q = 1, considered). 
The energy associated with the sequence is given by  

       �   =  ∑ ���
��
�� �	�                                                                (4) 
Luke proposed the methods of synthesizing perfect 
periodic autocorrelation sequences. It is also shown that 
such sequences have good energy efficiency. The 
techniques used to synthesize these sequences are 
computer search, modifying binary sequences, ternary 
sequences, M-sequences, Legendre sequences and 
product of two synthesized sequences [2]. By taking 
advantage of one of the important properties that is the 
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magnitude of the perfect sequences is constant and it is 
given by 

   S ��k� = ∑ ŝ��	�exp �−
��
�� &2(	)/+� 0 ≤ ) < +            (5) 
By setting ‘k’ to zero, Eqn. (5) becomes 

| S.��0�|2 = |∑ ��
��
�� �	�|�  =   �                                      (6) 

In his work [2], Luke tabulated the perfect sequences up 
to length 60 only, which in not enough for radar 
applications. Further he suggested construction of 
higher sequence lengths by using product of two 
sequences. However, the efficiency of synthesized 
sequences is degraded due to their non-uniform 
amplitude. In case of taking product of two non-uniform 
periodic sequences, the efficiency further decreases to 
η= η1η2, where η1 and η2 are efficiencies two sequences. 
Formula for calculating η is:   

        0 = ∑ 12�
�
|12�
�|345


��
��                                                              (7) 

When these synthesized sequences are used for pulse 
compression radar applications, the energy efficiency of 
the transmitted signals must be high for detection of 
target present at long range and to achieve high range 
resolution, sequence length must be large. Hence, this 

paper is mainly focused on the design of sequences 
with perfect periodic autocorrelation having larger length 
and high energy efficiency. 

III. CONSTRUCTION OF PERFECT PERIODIC 
BINARY SEQUENCES 

M-sequences and Legendre sequences exhibit lowest 
periodic autocorrelation function (PACF) equal to |Ri(τ ≠ 
0) = 1|. The Ipatov code [9] is also a code pairs exhibits 
perfect periodic autocorrelation (the cross correlation of 
the code pair) with minimal mismatch loss. But the 
construction method of reference code for Ipatov pair is 
complicate. M-sequences are two valued binary codes 
{±1}, having code length N, which produces periodic 
auto-correlation of peak value equal to N and uniform 
sidelobes of value 1. Similarly, the Legendre codes also 
demonstrate a similar property that is the off-peak 
sidelobes are equal to 1. Fig. 1 shows the amplitude 
and autocorrelation function of M-sequence/Legendre 
sequence of code length 31. The ACF clearly show that 
the magnitude of sidelobes other than peak is constant 
and level is 1. Which is clearly revealed in Fig. 1 (b). 

 

(a) 

 

(b) 

Fig. 1. M-sequence N=31 (a) amplitude of transmitted signal (b) autocorrelation function (sidelobes =1). 

 

(a) 

 

(b) 

Fig. 2.  Punctured M-sequence N=31 (a) amplitude of transmitted signal (b) cross-correlation function. 
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Transmitted Signal: [1  0  0  1  0  0  1  0  0  0   0   1  1  1   
0  1   0   1   0   0   0   1  1  1  1  0  1  1  0  1  1]  
Reference:  [1    -1   -1  1   -1   -1  1   -1   -1   -1   -1  1  1  
1  -1  1  -1  1  -1  -1  -1  1  1  1  1  -1  1  1  -1  1  1] 
Fig. 2 shows that the amplitude of the transmitted 
signal, where ‘0’ level shows no-transmission, and level 
‘1’ is transmission of signal. There are 15 ‘0s’ and 16 
‘1s’ in transmitted signal, represents that the duty cycle 
of transmitted signal is nearly 50%. These signals are 
commonly referred as punctured M-sequence or On-Off 
keying (OOK) sequences. The applications of OOK 
signals for non-coherent pulse compression (NCPC) 
radar is explained in [10-12]. The process of changing 
all ‘-1s’ to ‘0’is called puncturing [13-15]. Therefore, the 
energy efficiency of the transmitted signal N=31 is only 
51. 6%. On the other hand, in Fig. 1(a) the amplitude of 
transmitted signal is constant and it is equal to 1. 
Hence, energy efficiency is 100%. Lei Xu and Qilian 
Liang [13, 14] also demonstrated the construction of 
punctured sequences which are similar to on-off keying 
sequence. Fig. 2(b) shows that the sidelobes of 
punctured M-sequence are zero. These zero sidelobes 
are achieved at the cost of sacrificing energy in 
transmitted signal. Another important point is that M-
sequences or Legendre sequences exhibit perfect 
periodic autocorrelation property (all sidelobes equal to 
zero) only when unipolar transmitted signal has ‘1’s 
more than ‘0’s by one element only. This verifies that 
the energy efficiency of such sequences is slightly 
greater than 50% and approaches 50% as sequences 
length is exceptionally large. When such sequences are 
used in radar applications, the probability of detection is 
reduced. This problem is dealt by using variable 
amplitude sequences, where in place of zero ‘0.739’ is 
transmitted. Due to this, duty cycle in increased and in 
turn energy efficiency is increased to 78%.   
Two major issues which are important in the design of 
waveforms for pulse compression radars are: (i) for 

better detection probability, the received signal must 
contain sufficient energy because matched filter is used 
in radar receivers. The signal-to-noise ratio at the output 
of the matched filter is given by 2� +�⁄ . In this 
expression, E denotes the energy contained by received 
signal. Therefore, it clearly shows that to detect the 
desired target at long range, the reflected echo signal 
must contain sufficient energy. To receive sufficient 
energy in reflected echo signal, high energy signals are 
to be transmitted.(ii) To achieve high range resolution, 
compression ratio must be high which is directly 
proportional to the sequence length N. In case of 
biphase or polyphase sequences compression ratio is 
equal to N, where N is number of bits in transmitted 
pulse.  
Considering these two factors, this paper proposes the 
construction of amplitude-symmetrical binary sequences 
and amplitude-asymmetrical binary sequences, which 
have perfect periodic autocorrelation (PPAC) properties, 
higher energy efficiency and large sequence lengths by 
using Legendre sequences, modified Legendre 
sequences and M-sequences.  The major advantage of 
using Legendre sequences is that these sequences can 
be designed for all prime numbers. Whereas M-
sequences are designed on for the lengths N= 2

n
-1, 

where n= 2, 3, …. For example; between sequence 
lengths of 1000 and 10,000, only four M-sequences are 
available (1023, 2047, 4095 and 8191). On the other 
hand, there are 519 Legendre sequence between 1000 
and 10,000 [10]. Fig. 3(a) depicts the amplitude of the 
synthesized binary transmitted pulse whereas Fig. 3(b) 
shows the autocorrelation function of the same. In this 
case the transmitted and reference signals are same; 
hence we refer it as autocorrelation function. To 
demonstrate the resolution property of binary 
synthesized sequences, the amplitude of the transmitted 
signal and its autocorrelation function is shown in Fig. 4.  

 
(a) 

Transmitted signal: [1  -0.739   -0.739  1  -0.739  -0.739   1   -0.739   -0.739   -0.739   -0.739  1  1  1  -0.739   1 -0.739  
1   -0.739   -0.739   -0.739  1  1  1  1  -0.739  1  1   -0.739   1  1] 

 

(b) 

Fig. 3. Synthesized binary sequence N=31 (a) amplitude of transmitted signal (b) Autocorrelation function. 
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Table 1 shows the synthesized binary sequences up 
lengths 149. This table includes, all prime numbers from 
N=3 to N=149 and also includes lengths 4, 15 and 63 
which are not prime. In case of all Legendre sequences, 
which satisfy N ≡ 3(mod4), and N is prime number, the 
value of ‘b’ can be calculated as:  

              7 =  ��
�8 2

√:;<
                                                                        (8) 

The other Legendre sequences that satisfy the condition 
N ≡ 1(mod4), and N is prime number are referred as 
‘modified Legendre sequences’. In such sequences zero 
appears in leading edge. These sequences are modified 
by using search method and modified in such a way that 
these sequences have good periodic autocorrelation 
property. It is observed that in all such sequences, given 

in Table 1, the sidelobe suppression in zero correlation 
zone (i.e. off-peak sidelobes) is better than-77dB. 
Fig. 4(b) clearly shows that the impulse like 
autocorrelation function will resolve closely spaced 
targets and this resolution depends upon the 
compression of the pulse. To enhance this resolution 
capability, sequences with higher lengths must be used. 
The resolution capability of sequence length N=149 can 
be understood by comparing Fig. 3(b) and 4(b). The 
width of the autocorrelation peak is like impulse in Fig. 
4(b), whereas in Fig. 3(b) width of the autocorrelation 
peak is more. Therefore, higher sequence lengths are 
appropriate for high-resolution radar applications. 

 

(a) 

 

(b) 

Fig. 4.  Synthesized binary sequence N=149 (a) amplitude of transmitted signal (b) Autocorrelation function. 

Table  1. 

N 
η (in 
%) 

Perfect periodic Binary Sequence with good Energy Efficiency η  

3 75 1     b    1      (b= -0.5) 

4 100 1  1   1 b    (b= -1) 

5 47.8 0.31     1     b     b     1     (b =  -0.382) 

7 71.8 1     b     b     1     b     1     1   (b= -0.586) 

11 72.8 1     b     1     b   b   b   1     1     1     b    1    (b = -0.634)  

13 62 0.21     b     1     b    b   1     1     1     1     b    b     1     b   (b = -0.58) 

15 74 b    b    b     1    b    b     1     1    b     1    b     1     1    1     1   (b = -0.667) 

17 64.8 0.2      b    b   1     b     1     1     1     b     b     1     1     1   b    1     b     b   (b= -0.61) 

19 75 1     b     1     1     b     b     b     b     1     b     1     b     1    1     1     1     b     b     1    (b = -0.691) 

23 76.3 1   b   b   b   b   1   b   1   b  b   1   1   b  b   1   1   b   1   b   1   1   1   1    (b = -0.71) 

29 71 
0.16      b     1     1     b     b     b     b     1     b     1     1     1    b    1     1     b     1     1     1     b     1     b     b      b     b    
1     1     b    (b = -0.687) 

31 78 
1     b     b     1     b     b     1     b     b     b    b    1     1    1     b     1     b    1     b    b     b     1     1     1     1     b    1     1     
b     1     1   (b = -0.739) 

37 74 
0.14     b     1     b     b     1     1     b     1     b     b     b     b    1     1     1     b     1     1     1     1     b     1     1     1     b    
b     b     b     1     0     1     1     b     b     1    b  (b = -0.72) 

41 74.8 
0.135    b    b    1    b    b   1    1    b    b    b    1     1     1     1     1     b     1     b     1     b     b    1     b     1     b     1     1     
1     1     1     b     b     b     1     1     b     b     1    b     b   (b = -0.73) 

43 80 
1     b    1     1     b     1     b     1     1     b     b     b     1    b    b     b     b    b     1     1     1     b     1    b    b    b     1    1    
1    1    1    b   1    1    1   b   b  1   b  1   b  b   1 (b = -0.768) 

47 80.5 
1    b    b    b   b   1   b   b   b    b    1    1    b   1    b   1     b     b    b    1    1    b   1    1    b    b    1     b     b    1    1    1    
b    1    b    1    b    b    1   1    1    1    b    1    1    1    1  (b = -0.776) 

53 77.3 
0.12     b   1    1    b   1    b    b   1    b    b    b   1    b   1    b    b    b    1   1   1   1   1   1   b    b  1    1   b   b   1   1   1   
1   1  1   b   b    b   1   b   1   b   b    b   1   b   b   1   b   1   1   b  (b = -0.758) 
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59 81.8 
1    b    1   b   b   b   1   b   1   b   1   1   b    1   1   b   b   b  1   b   b   b   b   1   1   b   b   b   b   b     1  1  1  1  1   b   b   
1   1  1  1   b  1  1  1   b   b  1  b  b   1  b  1   b  1  1  1   b  1  (b = -0.794) 

61 78.6 
0.114    b  1   b   b   b   1   1   1  b  1  1  b   b   b   b   b  1  1  b  b  1   b   1   1   b  1   b   1  1  1   1  1  1  b  1  b  1  1   b  
1  b   b   1  1  b  b   b   b   b   1   1  b  1  1  1  b   b   b   1   b    (b = -0.773)  

63 82 
b   b   b   b   b   1  b  b   b   b   1   1   b  b  b  1  b   1  b  b  1  1  1  1  b  1  b  b   b  1  1  1  b  b   1    b   b   1   b  1  1  b  
1  1  1   b  1  1  b  b  1  1  b  1  b  1  b  1  1  1  1  1  1 (b = -0.8) 

67 82.6 
1   b   1  1  b  1  b  1  1  b  b  1 1  1  b   b   b   b  1  b  1  b   b   b   b   b  b  1  1  b  1  1  1  b  1  b    b  b  1 b   b   1  1  1  
1  1  1  b  1  b  1  1  1  1  b  b   b  1  1  b   b  1  b  1  b  b  1  (b = -0.805)       

71 83 
1  b  b  b  b  b  b  1  b  b  b  1  b  1 1  b  b  1  b  b  b  1  1  1  b  b  1  b  1  b  b  1  b  1  1  1  b  b   b  1  b  1  1  b  1  b  
1  1  b  b  b  1 1  1  b  1  1  b  b  1  b  1 1  1 b  1  1  1  1  1  1 (b = -0.809)          

73 
80 
 

0.105  b  b  b  b  1  b  1  b  b  1  1  b 1  1  1  b  1  b  b  1   1  1  b   b   b  1  b  1   1  1  1   b  1  1 b   b   b   b  1   1   b  1  
1   1  1  b   1  b   b   b  1  1  1  b   b  1  b  1  1  1  b  1  1  b   b  1  b  1   b    b   b   b   (b = -0.79)   

79 83.6 
1   b   b  1  b   b  1  1  b   b  b  b   1   b   1  1  b  1  b  b   b   b  b  b  1  b   b  1  1  1  1  b  b  1  1 1  b  1  b  1  b  1  b  1  
b  b   b  1  1  b   b   b   b   1  1  b   1  1  1   1  1  1  b  1  b   b  1  b  1  1  1     1   b  b  1  1  b  1  1  (b = -0.817)  

83 83.9 
1  b   1   b  b  1  1  b  1  b  b  b  b  1  1  1  b  b  1  1  1  b  1  b  1  b  b  b  b  b  b  b  1  b  1  1   b     b   b  1   b   b   1   1   
b  1  1  1  b  b  1  b  1  1  1  1  1  1  1  b  1  b 1   b  b  b  1  1  b  b  b  1  1  1   1  b  1  b  b  1  1  b  1(b = -0.821)    

89 81.7 
0.096  b  b  1  b  b  1  1  b   b  b   b  1  1  1  1  b   b  b  1  b  b  b  1 1  b  1   1  1  1  1  1  b  1  b     1   b  1  1 b  b  1  b  
1  b  b  1  b  1  b  b  1  1  b  1  b  1  b  1  1  1  1  1  1  b  1  1  b  b  b  1  b  b     b  1  1  1  1  b  b  b  b  1  1  b  b  1  b  b   
(b = -0.808)     

97 82.4 
0.092  b  b  b  b  1  b  1  b  b  1  b  b  1  1  1  b  1  b  1  1  1  b  1  b  b  1  b  1  1  1  b  b  b  1  b     b  1  1  1  1  1  1  b  
b  1  1  b  b  b  b  1  1  b  b  1  1  1  1  1  1  b  b  1  b  b   b  1  1  1  b  1  b  b   1  b  1  1  1  b  1  b  1  1  1  b  b  1  b  b  
1  b  1  b  b  b  b     (b = -0.816)   

101 82.8 
0.09 b   1  1  b  b  b  1  1  b  1  1  1  b  b  1  b  b  1  b  b  b  b  b  b  b  1  1  1  1  b  b  1  b  1  1   b   b   1  1  1  1  1  b  
1  b  1  b  1  b  1  1  b  1  b  1  b  1   b  1  1  1  1  1  b  b  1  1  b  1  b  b  1     1  1  1  b  b  b   b   b   b  b  1  b   b  1  b  
b  1  1  1  b  1  1  b  b  b  1  1  b    ( b =-0.82)  

103 85.1 
1  b  b  1  b  1  1  b  b  b  1  1  1  b  b  b  b  b  b  b  1  1  1  b  1  b  b  1  b  b  b  1  b  b  b  1  b  1     b  1  1  b  1  1  1  1  
b  1  1  b  b  1  b  1  1  b  b  1  b  b  b  b  1  b  b  1  b  1  b  1  1  1  b  1  1  1     b  1  1  b  1   b  b  b  1  1  1  1  1  1  1  
b  b   b   1  1  1  b  b   1   b  1  1 (b = -0.836) 

107 85.2 
1  b  1  b  b  1  1  1  1  b  b  b  b  b   b  1  b  1  1  b  1  1  1  b  1  b   1  b  1  b  b  1  1  b  b  b  b     b  1  b  b  b  b  1  b  
1  1  b  b  b  1  1  b  b  1  1  b  b  1  1  1  b  b  1  b  1  1  1  1  b  1  1  1  1  1  b  b  1  1  b  1  b  1  b  1  b  b   b  1  b  b  
1  b  1  1  1 1  1  1  b  b  b  b  1  1  b  1  (b = -0.838) 

109 83.3 
0.087   b  1  b  b  b  1  b  1  b  1  1  b  1  1  b  b  1  1  1  b  b  b  1  1  b  b  b  b  b  1  b  1 1  b  b  b  1  b  1  1 1  1  b  1  
b  b  1  b  b  1  1  1  1  1  1  1  1  1  1  b  b  1  b  b  1  b  1  1  1  1  b  1  b  b  b  1 1  b  1  b  b  b  b  b  1  1  b  b  b  1  1  
1  b  b  1  1  b  1  1  b  1  b  1  b  b  b  1  b  (b = -0.826)   

113 83.5 
0.086   b   b  1  b  1  1  b  b  b  1  b  1  b  b  b  b  1  b  1  1  1  b  1  1  b  b  1  b  1  b  b  b  1  1  1     b  1  1  1  1  b  1  
1  b  1  1  1  1  b  b  b  b  b  1  1  b  b  1  1  b  b  b  b  b  1  1  1  1  b  1  1  b  1  1  1  1  b  1  1  1  b  b  b  1  b  1  b  b  
1  1  b  1  1  1  b  1  b  b  b  b  1  b  1  b  b  b  1  1  b  1  b    b   (b = -0.828)    

127 86 
1  b  b  1  b  1  1  1  b  b  1  b  1  b  1  b  b  b  b  b  1  b  b  1  1  b  b  1  1  1  b  b  b  1  b  b  b  b     b  1  1  b  b  1  b  1  
1   b  1  b  b  1  b  1  1  1  1  1  1  1  b  b  b  1  b  1  1  1  b  b  b  b  b  b  b  1     b   1  1  b  1  b  b  1  b  1  1  b  b  1  1  
1  1  1  b  1  1  1  b  b  b  1  1  b  b   1  1  b  1  1  1  1  1  b    1   b  1  b  1  1  b  b  b  1  b  1  1  (b = -0.849) 

131 86.3 
1 b  1  b  b  b  1  b  1  b  1  b  b  b  1  b  b  1  1  1  b  b  1  1  1  b  1  b  b  1  1  1  1  b  b  b  b  1     b  b  1  b  1  b  b  b  
b   1  b  b  1  1  b  b  1  b  1  1  b  b  b  b  b  b  b  b  1  1  1  1  1  1  1  1  b  b     1  b  1  1  b  b  1  1  b  1  1  1  1  b  1  
b  1  1  b  1  1  1  1  b  b  b  b  1  1  b  1  b  b  b  1  1  b  b     b   1  1  b  1  1  1  b  1  b  1  b  1  1  1  b  1 (b = -0.851) 

137 84.9 

0.0785  b  b  1  b  1  1  b  b  b  1  b  1  1  b  b  b  b  b  b  1  1  b  1  1  b  1  1  b  1  b  1  b  1  b  1   b  b  b  b  1  1  1  1  
b  1  1  1  1  b  b  1  1  1  1  1  b  1  1  b  b  b  1  b  b  b  1  1  b  b  1  1  b  b   b  1  b  b  b  1  1  b  1  1  1  1  1  b  b  1  
1  1  1  b  1  1  1  1  b  b  b  b  1  b  1  b  1  b  1  b  1  1   b  1  1  b  1  1  b  b  b  b  b  b  1  1  b  1  b  b  b  1  1  b  1  b  
b     (b= -0.843)       

139 86.6 

1  b  1  1  b  b  b  b  1  b  1  b  1  b  1  1  b  1  1  1  b  1  1  1  b  b  1  1  b  b  b  b  1  1  b  b  b  b     b  1  1  b  b  1  b  b  
b  b  1  b  1  b  b  1  b  b  1  b  1  1  1  1  1  b  b  b  b  b  1  b  1  b  1  1  1  1     1  b  b  b  b  b  1  b  1  1  b  1  1  b  1  b  
1  1  1  1  b  1  1  b  b  1  1  1  1  1  b  b  1  1  1  1  b  b    1  1  b  b   b  1  b  b  b  1  b  b  1  b  1  b  1  b  1  1  1  1  b  b  
1(b = -0.855) 

149 85.5 

0.075   b  1  1  b  b  b   b  1  b  1  1  1  1  1  1  b  b  1  b  b  1  b  1  b  b  b  1  b  b  b  b  1  b  1  b     b   b  1  b  1  1  b  
1  1  b  b  b  1  b   1  1  1  b   b  1  1  1  1  1  1  b  1   b  b  1  1  b  b   b  1  1  1  b  1  1  b  1  1  1  b  b  b  1   1  b  b  1  
b  1  1  1  1  1  1  b  b  1  1  1  b  1  b  b  b  1  1  b  1  1  b  1  b  b  b  1  b  1  b  b  b  b  1  b  b  b  1  b  1  b  b  1  b  b  
1  1  1  1  1  1  b  1  b  b  b  b  1  b   (b = -0.85)   

IV. CONCLUSION 

In this paper, binary periodic waveforms are studied for 
the application of phase coded radar systems that 
employs pulse train or CW waveforms. Majority of the 
PPAC sequences are achieved by modifying Legendre 
sequences and such sequences can be designed for all 
prime numbers. The applications and appropriateness 
of perfect periodic binary sequences for pulse 
compression radar is explained with the help of 
simulated results. 
From Fig. 4, it can be understood that when we increase 
the sequence length, both energy efficiency and 
compression ratio increase which in-turn improve the 
detection probability as well as range  resolution  of   the  

 
radar system. Additionally, the significant advantage of 
the designed binary sequences is that sidelobes are as 
low as zero within the zero-correlation zone (ZCZ) that 
is (N−1). Binary periodic sequences could be effectively 
applied in multi-target scenario where small targets near 
strong target goes undetected due to the presence of 
sidelobes. 

V. FUTURE SCOPE 

The performance of these sequences must be checked 
in real time applications. 
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